To Parcel or Not to Parcel: Exploring the Question, Weighing the Merits

Todd D. Little, William A. Cunningham, and Golan Shahar

Department of Psychology
Yale University

Keith F. Widaman
Department of Psychology
University of California at Davis

We examine the controversial practice of using parcels of items as manifest variables in structural equation modeling (SEM) procedures. After detailing arguments pro and con, we conclude that the unconsidered use of parcels is never warranted, while, at the same time, the considered use of parcels cannot be dismissed out of hand. In large part, the decision to parcel or not depends on one's philosophical stance regarding scientific inquiry (e.g., empiricist vs. pragmatist) and the substantive goal of a study (e.g., to understand the structure of a set of items or to examine the nature of a set of constructs). Prior to creating parcels, however, we recommend strongly that investigators acquire a thorough understanding of the nature and dimensionality of the items to be parcelled. With this knowledge in hand, various techniques for creating parcels can be utilized to minimize potential pitfalls and to optimize the measurement structure of constructs in SEM procedures. A number of parceling techniques are described, noting their strengths and weaknesses.

Using parcels as indicators of constructs in structural equation models (SEMs) has been and remains a controversial practice. Historically, debates on the utility and efficacy of parcels date back over 40 years (e.g., Cattell, 1956; Cattell & Burdsla, 1975), and the debates have continued in contemporary SEM circles (e.g., Bandalo & Finney, 2001; Kishto & Widaman, 1994; Marsh, Hau, Balla, & Grayson, 1998; SEMNET, 2001). The goals of this article are to (a) examine the pros and cons of the practice of parceling; (b) detail the uses, and attendant advan-

Requests for reprints should be sent to Todd Little, Department of Psychology, Yale University, P.O. Box 208205, New Haven, CT 06520-8205. E-mail: Todd.Little@Yale.edu
ARGUMENTS PRO AND CON

Common Theoretical Concerns

Most of the arguments both pro and con have focused on the differential analytic behavior and psychometric characteristics of items and parcels. However, philosophical arguments can also be levied. On one hand, the decision to parcel or not to parcel can be rendered moot if a researcher's philosophical position is on the con side. From an empiricist-conservative philosophy of science perspective, parceling is akin to "cheating" because modeled data should be as close to the response of the individual as possible in order to avoid the potential imposition, or arbitrary manufacturing, of a false structure. Any potential source of subjective bias on the part of the data analyst is to be avoided at all costs, a simple a priori principle with which most would agree. In this sense, allowing the researcher to create parcels from items fundamentally undermines the objective empirical purpose of the techniques that have been developed to model multivariate data.

From a more pragmatic-liberal philosophical perspective, parcels have potential merits as the lowest level of data to be modeled. Given that measurement is a strict, rule-bound system that is defined, followed, and reported by the investigator, the level of aggregation used to represent the measurement process is a matter of choice and justification on the part of the investigator, using parcels would not be an operational aspect of an investigator's, reviewers', and, ultimately, the examining investigator in order for the study to be deemed legitimate.

The gray areas between these two sides of the debate: What constitutes a construct and what circumstances are arguable?

A common point of concern over the composition of constructs and measurements is that they can vary in their fundamental composition. The first dimension is the continuum of constructs, or homogeneous to heterogeneous. For example, a unidimensional construct, for example, represents a unidimensional level of "g" represents a multidimensional construct along which constructs and behaviors are measured.

Description of the boundaries of the construct are highly circumscribed both in terms of operationalization (Skinner, 1971) and in a restricted manner, implicitly suggesting self-efficacy is quite different from the self-construct (Multon, Brown, & Leavitt, 1992).

Measurements also vary in their dimensions. The first dimension is the unidimensional (or homogenous) construct is unidimensional, the second, unidimensional item content, as the construct is multidimensional or heterogeneous. The investigator may choose to target the core of the construct across all facets of the construct (i.e., the NEO personality inventory; McCrae, 1992) or select the construct comprising the construct extroversion, excitement seeking, positive emotionality could measure the core facet (i.e., the Big Five factors when representing extroversion, Nesselroade, 1999).

The second dimension along which constructs can be characterized as "clean to dirty," the relative presence of un...
ing techniques; and (c) discuss the cont-

it is used most commonly in multivariate
for use with latent-variable analysis
ysis, SEM). A parcel can be defined as an
sum (or average) of two or more items,
ating items to manufacture indicators of
at best and cheating at its worst. More-
to the oft-whispered reputation of SEM
on of reality. For advocates of parceling,
one that puts a fine sheen on an other-
ern picture of reality. In this sense, the
ong smoke and mirrors, but rather as pro-
really “smokes.”

, we have organized our thinking along
arguments, both pro and con, for using
the psychometric principles involved.
ng techniques that can be used in specific
izations involved in the deci-

RO AND CON

have focused on the differential analytic
ation of items and parcels. However, philo-
one hand, the decision to parcel or not to
ar’s philosophical position is on the con
osophy of science perspective, parcel-
data should be as close to the response
 avoid the potential imposition, or arbitrary
ontal source of subjective bias on the
ll costs, a simple a priori principle with
owing the researcher to create parcels
ective empirical purpose of the tech-
multivariate data.
aphorical perspective, parcels have poten-
modeled. Given that measurement is a
allowed, and reported by the investigator,
asurement process is a matter of
choice and justification on the part of the investigator. With a compelling justifica-
tion, using parcels would not be seen as a transgression against truth because the
operational aspects of an investigation are, fundamentally, a public process. Edi-
tors, reviewers, and, ultimately, the field must approve the methods chosen by the
vestigator in order for the study’s results to be accepted as veridical.

The gray areas between these two extreme positions have provided the fodder
of debate: What constitutes a compelling justification for using parcels, and under
what circumstances are arguments supporting the use of parcels tenable?

A common point of concern underlying many of these arguments is the nature
of constructs and measurements in the behavioral and social sciences. Constructs
can vary in their fundamental composition along two orthogonal dimensions. The
first dimension is the continuum from unidimensionality to multidimensionality,
or homogeneous to heterogeneous, respectively. Facility with adding basic digits,
for example, represents a unidimensional construct, whereas intelligence at the
level of “g” represents a multidimensional or heterogeneous construct. The second
dimension along which constructs vary is the continuum from high to low explicit-
ess. Descriptions of certain constructs are highly explicit, with a clear demarca-
tion of the boundaries of the construct. For example, action-control beliefs are
highly circumscribed both in terms of their theoretical definition and their empiri-
cal operationalization (Skinner, 1996). Other constructs are defined in a much less
restricted manner, implicitly subsuming additional content “of the same type.” For
example, self-efficacy is quite variable across operational measurements of the

Measurements also vary in their fundamental nature along two orthogonal di-
nensions. The first dimension is the same as for constructs, a continuum from
idimensional (or homogeneous) to multidimensional (or heterogeneous). If a
construct is unidimensional, then the measurements of that construct will contain
idimensional item content, as this is the only choice open. However, if a con-
struct is multidimensional or heterogeneous in nature, various choices are open or
viable. The investigator may choose to assess the relatively unidimensional or ho-
ogeneous core of the construct or may opt to obtain representative assessments
of all facets of the behavioral domains covered by the construct. For example, in
the NEO—personality inventory assessing the Big 5 personality factors, Costa and
McCrae (1992) identified six facets for each of the Big 5 dimensions. The facets
comprising the construct extroversion are gregariousness, assertiveness, activity,
excitement seeking, positive emotions, and warmth (Costa & McCrae, 1992). One
could measure the core facet (i.e., gregariousness) or select broadly across all fac-
cets when representing extroversion as a construct (Little, Lindenberger, & Nesselroade, 1999).

The second dimension along which measurements vary is a continuum that may
be characterized as “clean to dirty.” This continuum captures problems associated
with the relative presence of unwanted sources of variance, such as method con-

tamination, acquiescence response bias, social desirability, and experimental effects such as fatigue and boredom. This second dimension reflects the various threats to validity associated with the design and execution of measurement operations. Here, a clean measure of a construct is one that is relatively uncontaminated and unconfounded by unwanted influences, whereas a dirty construct would be rife with unwanted sources of systematic error variance.

Given these dimensions along which constructs and measurements vary, the preceding philosophical positions appear to arise from differing interpretations of the unidimensional versus multidimensional dimension on which both constructs and their measures vary. The empiricist–conservative position appears rooted in the stance that all sources of variance in each item must be represented in any multivariate statistical models involving a given scale. Failing to represent one or more sources of variance, however minor, may lead to bias in estimates of other key parameters throughout the model. In contrast, the pragmatic–liberal position holds that representing each and every source of variance in each item, particularly on an a priori basis, is impossible. Under this position, researchers cannot know every single source of variance in every single item; one can only hope that one’s models will represent the important common sources of variance across samples of items. When minor influences, which are substantively trivial yet empirically significant, cannot be predicted on an a priori basis, they will be difficult or impossible to distinguish from chance findings. Rather than engage in data snooping that is of questionable value, the pragmatic–liberal position would contend that researchers should concentrate on building replicable models based on solid and meaningful indicators of core constructs that will replicate across samples and studies.

The Empirical Pros of Parcels

Turning from theory to empirical issues, at least two classes of argument in favor of parcels have been offered (Bandolos & Finney, 2001). The first class, or category, focuses on the differing psychometric characteristics of items and parcels. The second category of argument has focused on the factor-solution and model-fit advantages accruing to models based on parcels. As we will see, each class of argument for parcels is, for the most part, an argument against items.

Regarding the first category of concern, numerous researchers have highlighted the psychometric merits of parcels relative to items. Compared with aggregate-level data, item-level data contain one or more of the following disadvantages: lower reliability, lower communality, a smaller ratio of common-to-unique factor variance, and a greater likelihood of distributional violations. Items also have fewer, larger, and less equal intervals between scale points than do parcels (see Bagossi & Heatherton, 1994; Kishton & Widaman, 1994; McCallum, Widaman, Zhang, & Hong, 1999; cf. Hau & Marsh, 2001). As we discuss below, these concerns are grounded in basic psychometric theory.

A second category of concern focuses model items versus parcels and on the other hand, argue that, because fewer parameters are used, parcels are preferred, particularly (e.g., Bagossi & Edwards, 1998; Bagossi & Hocevar (1988) argued that the item-subscale lower ratios may lead to instability of psychometric properties of the items and that all model fit. Simply stated, the various more acceptable when parcels, rather than psychometric and estimation advantageParcel data, models based on parcelized data (a) estimated parameters both locally in defining an entire model), (b) have fewer chances for loadings to emerge (both because fewer variances are smaller), and (c) lead to reduced error (MacCallum et al., 1999).

Psychometric Considerations. A favor of parcels over items are not identifiable subscales underlie each of them. In order to illustrate the extent a brief overview of classical test theory.

In their now classic study, Rushon, Bulechek, and Vers是可以 associated with the use of a single struct. They argued against items, respectively. However, they pointed out that individual items can construct that a researcher wants to measure (collection rationale). Second, they argued that least reliable than aggregate scores (i.e., at data, they demonstrated that, in each of the relations emerged between conceptual aspects were included as aggregate scores; however, if items were used. Rushon et al. concluded could not be replicated. The logic of their arguments regard- ers, and users in the same logic used by those who used aggregate scores.

As an illustration using classical test theory, discussed by Little et al. (1999) provides a better agreement can be understood. The three main-sampling model are that the pool: a) a construct indicators can be selected to measure some degree of association with the con
as, social desirability, and experimental ef-

This second dimension reflects the various
design and execution of measurement opera-
tion is one that is relatively uncontrolled
ences, whereas a dirty construct would be
stic error variance.

ich constructs and measurements vary, the
to arise from differing interpretations of
cional dimension on which both constructs
ist--conservative position appears rooted in
he item must be represented in any
given a given scale. Failing to represent one or
no, may lead to bias in estimates of other

In contrast, the pragmatic--liberal position
source of variance in each item, particularly
r this position, researchers cannot know even
ngle item; one can only hope that one's
sources of variance across samples are
stantially trivial yet empirically sig-
riori basis, they will be difficult or impossi-
ather than engage in data snooping that is
eral position would contend that research-
dicable models based on solid and meaningful
ill replicate across samples and studies.

uses, at least two classes of argument in favor
(Segars & Finney, 2001). The first class, or cate-
ometric characteristics of items and parcels.
focused on the factor-solution and model-fit
of parcels. As we will see, each class of argu-
argument against items.

tern, numerous researchers have highlighted
relative to items. Compared with aggregated
one or more of the following disadvan-
ility, a smaller ratio of common-to-unique
od of distributional violations. Items also
vals between scale points than do parcels
iston & Widaman, 1994; McCallum,
au & Marsh, 2001). As we discuss below,
psychometric theory.

A second category of concern focuses on the number of parameters required to
model items versus parcels and on the overall fit of structural models. Advocates
argue that, because fewer parameters are needed to define a construct when parcels
are used, parcels are preferred, particularly when sample sizes are relatively small:
(e.g., Bagozzi & Edwards, 1998; Bagozzi & Heatherton, 1994). Marsh and
Hocevar (1988) argued that the item:subject ratio be explicitly considered because
lower ratios may lead to instability of the factor solution, particularly if the
psychometric properties of the items are poor. A similar argument focuses on over-
all model fit. Simply stated, the various indexes of model fit are expected to be
more acceptable when parcels, rather than items, are modeled because of the
psychometric and estimation advantages of parcels. Compared with item-level
data, models based on parcel data (a) are more parsimonious (i.e., have fewer
estimated parameters both locally in defining a construct and globally in representing
an entire model), (b) have fewer chances for residuals to be correlated or dual
loadings to emerge (both because fewer indicators are used and because unique
variances are smaller), and (c) lead to reductions in various sources of sampling
error (MacCallum et al., 1999).

Psychometric considerations. As can be seen, the different arguments in
favor of parcels over items are not identical because differing psychometric princi-
les underlie each of them. In order to illustrate the merits of these views, we pre-
ent a brief overview of classical test theory and the principles of aggregation.

In their classic study, Rushton, Brainerd, and Pressley (1983) discussed the
pitfalls associated with the use of a single item to represent a psychological con-
struct. They argued against items, relative to aggregate scores, on two bases. First,
y they pointed out that individual items are unlikely to be as representative of the
construct that a researcher wants to measure as would an aggregate score (i.e., a
selection rationale). Second, they argued that individual item scores are statistically
less reliable than aggregate scores (i.e., a psychometric rationale). Using published
data, they demonstrated that, in each of several instances, theoretically expected
relations emerged between conceptually similar constructs when all variables
were included as aggregate scores; however, this was not the case when individual
items were used. Rushton et al. concluded that the disregard for the principles of
data aggregation had led to improper inferences and hampered progress in the
field. The logic of their arguments regarding the problems with items remains prin-
cipally the same logic used by those who advocate for parcels.

As an illustration using classical test theory, the domain-sampling model dis-
cussed by Little et al. (1999) provides a framework by which the principles of ag-
gregation can be understood. The three fundamental assumptions of the do-
main-sampling model are that (a) a construct exists, (b) an infinite number of
indicators can be selected to measure the construct, and (c) each indicator has
some degree of association with the construct's true centroid. Although we rely on
the domain-sampling model for this discussion, each proposition and conclusion can be supported via alternative metaphors and methods (see Little et al., 1999). Any given indicator of a construct can thus be represented as

\[X_i = T_i + S_i + e_i \]

where \(X_i \) represents the score of an individual for a particular item, \(T_i \) represents the target construct component, \(S_i \) represents the idiosyncratic or specific component, and \(e_i \) represents random error. In other words, a given item is assumed to contain various sources of variance: a “true” core aspect (i.e., the part of an item that assesses the construct we desire to measure), a “specific” component (i.e., the idiosyncratic, but reliable component of an item that is unrelated to the construct), and a random error component (i.e., the theoretically meaningless “junk” or noise). Figure 1, which is based on Little et al., illustrates the relations among the three conceptual sources of variance that comprise an item in relation to the construct that the item indicates. From this conceptualization, a number of basic propositions emerge. For example, because \(e_i \) contributes to the total variance of an item, any statistical indexes that rely on estimates of shared variance, such as correlations and regression coefficients, will be underestimated if analyses are based on items (Nunnally, 1978). Moreover, both the random error and the specific components of an item reduce its communality (Gorsuch, 1983).

Such problems are remedied through aggregation. If all the infinite indicators of the construct were measured, the random errors, \(e_i \), and the specific components, \(S_i \), would be drastically reduced because the sources of variance within an item and, across components are also assumed to be uncorrelated or very close to zero. The construct that is the sum of an infinite number of idiosyncratic components of the theoretically composed variance of the core, \(T_i \). In practice, however, because only a subset of items may be selected (i.e., items that are selected for a construct), we cannot directly observe all the idiosyncratic components of the construct. Cattell (1961) referred to as a “bloomed special cases of variance.”

Unlike random error (\(e_i \)), the specific factor conceptually reflects the presence of another component to the core definition of the latent variable. We have usually assumed that each \(S_i \) has a mean of zero, but that may be incorrect. If the factor is uncorrelated with the other specific factors, the factor will necessarily cancel out if the item-selection process does not select the items. In other words, systematic variance unrelated to the construct can create problems when an item correlates with a specific component of another construct. Like the primary construct of interest, the specific factors are multidimensional, such that the \(S_i \)’s across a number of items create a total unique source of variance. Furthermore, the specific factors can contaminate a particular measurement.

The law of large numbers, typically the principle that parameter estimates (e.g., of a population parameter) converge to the true value as the sample size increases, nonnormal distributions become more normal as the number of observations increases, and the aggregation of scores are a problem to be avoided. Increasing the number of items in a construct reduces the variance between points, making the constructs more reliable and effective. The reliability of the construct is increased as the number of items increases. More specifically, the reliabilities between points as more items are aggregated is improved, and the change of one scale point on the parcel-level...
individual for a particular item, T_i represents the idiosyncratic or specific component. In other words, a given item is assumed to have a "true" core aspect (i.e., the part of an item that can be measured), a "specific" component (i.e., the part of an item that is unrelated to the construct), and the theoretically meaningless "junk" or "component" T_i, illustrates the relations among the sources of variance within an item and, across all items in a domain, the e_i and S_i components are also assumed to be uncorrelated. As a result, an aggregate indicator that is the sum of an infinite number of items would consist almost completely of the geometrically compounding variance of the true component of the construct core, T_i. In practice, however, because only a subset of items is selected to represent a construct, some S_i variance may overlap with other indicators of similar composition (i.e., items that are selected from the same general quadrant of a domain). For example, a subset of items may share a method component, a response bias such as social desirability, or simply excessive item overlap, leading to what Cattell (1961) referred to as a "bloated specific" and what we have described as a "dirty" measure of a construct.

Unlike random error (e_i), the specific factor of an item (S_i) is reliable and conceptually reflects the presence of another construct, however narrow and irrelevant to the core definition of the latent variable of primary interest. Although we typically assume that each S_i has a mean of zero, is normally distributed, and is uncorrelated with other specific factors, the S_i components of items will not necessarily cancel out if the item-selection process is at all biased (Little et al., 1999). In other words, systematic variance unrelated to the latent construct of primary interest can create problems when an item correlates with one or more other items that share the same specific component (e.g., a method factor, a social desirability factor). Like the primary construct of interest, specific factors S_i of items can be multidimensional, such that the S_i's across a number of items share only a facet of their total unique sources of variance. Furthermore, the number of sources of variance that can contaminate a particular measured variable is practically limitless.

The law of large numbers, typically discussed in terms of the efficiency of parameter estimates (e.g., of a population mean), also holds for indicators of constructs. Within a person, a person's true score is more confidently represented to the extent that a larger number of measurements of the construct are used. Not only does the law of large numbers suggest that more items are better than fewer items in estimating a construct centroid, but it also suggests other ways in which aggregate scores are preferable to item scores. For example, as the number of items increases, nonnormal distributions become more normally distributed. As such, item distributions, which may have problems with skewness and kurtosis (thus violating assumptions of statistical inference), become more normally distributed when aggregated into scale scores or parcels. Similarly, scale intervals increase in number and effectively become both smaller and more equal with regard to the distances between points as more items are aggregated. For instance, the aggregation of two items, each measured on 4-point scales, yields a new, parcelled indicator that has seven scale points; because of the normalizing tendency of aggregation, the intervals would become, of necessity, smaller and more continuous in nature. Each change of 1 scale point on the parcel-level scale encompasses a smaller proportion of the sources of variance of an indicator.
of the cumulative distribution of scores than a change of 1 scale point on the item-level scale.

A related psychometric consideration regarding measurement is the distinction between the bias of an estimate and its efficiency. Bias refers to the “on average” behavior of items versus parcels to reveal the true centroid of a construct. Efficiency refers to the variability in this on average behavior. Any study reflects a single instantiation of a selection of indicators to represent a construct. Fundamentally, a given study contains only one selection of indicators out of the infinite number of sets of indicators possible. From a bias perspective, a given selection of indicators will, on average, reflect the construct with a given degree of bias. However, from an efficiency perspective, the one instantiation has a greater likelihood of missing the target if efficiency is low and parameter estimates are therefore more variable. The simulation and taxonomic model presented by Little et al. (1999) demonstrated that indicators selected from less diverse domains are more efficient than those selected from more diverse domains. As illustrated in Figure 2, the diversity of parceled indicators can be considerably less than the diversity of item-level indicators, and the communality of the parceled indicators can be considerably greater. Although analyses based on both sets of indicators would have the same implications for bias (i.e., on average, both would lead to equally accurate construct representation), the analyses based on parcels would be more efficient than the item-level analyses. The efficiency of parceled indicators implies that, if the selections are off base, they will not be as wildly or variably off base as would item-based indicators.

This effect can be seen in Figure 3. Panel A of Figure 3 displays a hypothetical scattering of selected items around the centroid of a construct. Parcelling items into groups of three, for example, would result in a reduced diversity of indicators surrounding the centroid as is seen in Panels B through F of Figure 3. When the variances of the items are equivalent, the location of a parcel in construct space is the geometric center of the area formed from the chosen items (for two items, the parcel would be located at the geometric midpoint of the line between any two items that are paired). Figure 3 indicates that even a random process of selecting pairs, triads, quadrads, or even larger number of items for parcels leads to a tighter, less diverse, and, therefore, more efficient construct space.

A general conclusion that can be drawn from the foregoing psychometric considerations is that the use of additional items yields a more encompassing and inclusive representation of a construct. However, this increase in number of items can create problems in SEM. Practically speaking, specifying a latent variable with a large number of indicators poses numerous problems, as discussed in the next section.

Model-level considerations. A first problem related to model-level considerations is related to Type I error. Due to the fact that about 1 in 20 correlations...
The first problem related to model-level considerations is the fact that about 1 in 20 correlations are more than a change of 1 scale point on the
measurement scale. A second problem regarding measurement is the distinction between the true score and the measured score. Bias refers to the “on average” differences between the true score and the measured score. The measured score is the true score plus an error component. Any study reflects a single point estimate of indicators to represent a construct. There is only one selection of indicators out of the possible set of indicators available. From a bias perspective, a given selection of indicators may reflect the construct with a given degree of bias. The one instantiation has a greater advantage because it is a better indicator of the construct. Low parameter estimates are problematic if the error variance is non-normally distributed and if the taxonomic model presented by Little et al. (2019) holds. As illustrated in Figure 2, the error variance of the parcel is less than the error variance of the item. As a result, a reduced diversity of indicators yields a more encompassing and informative construct. For example, a random process of selecting pairs, triples, or quartets of items for parcels leads to a tighter, less informative construct.

Panel A of Figure 3 displays a hypothetical selection of indicators to represent a construct. The selection of indicators is based on both sets of indicators presented in Figure 1. When the variance of a parcel in construct space is the same as the variance of the parcel in construct space, the selection of indicators becomes more general. The parcel with the highest variance in construct space is the one that is selected for the construct. The selection of indicators is based on the variance of the parcel in construct space.

Panel B of Figure 3 displays a hypothetical selection of indicators to represent a construct. The selection of indicators is based on both sets of indicators presented in Figure 1. When the variance of a parcel in construct space is the same as the variance of the parcel in construct space, the selection of indicators becomes more general. The parcel with the highest variance in construct space is the one that is selected for the construct. The selection of indicators is based on the variance of the parcel in construct space.

Panel C of Figure 3 displays a hypothetical selection of indicators to represent a construct. The selection of indicators is based on both sets of indicators presented in Figure 1. When the variance of a parcel in construct space is the same as the variance of the parcel in construct space, the selection of indicators becomes more general. The parcel with the highest variance in construct space is the one that is selected for the construct. The selection of indicators is based on the variance of the parcel in construct space.

159
would be significantly related by chance alone (at a .05 Type I error rate), a
10-variable correlation matrix, with \(10(9)/2 = 45\) unique correlations, would con-
tain about two spuriously significant correlations even if all correlations in the ma-
trix were zero in the population. By chance alone, and assuming no bias in indic-
ator selection, a model with three constructs each measured with 10 variables would
yield about 22 spurious correlations, whereas a structural model with three con-
structs, each measured with three parcels of items, would yield only about two spu-
rious correlations. The nature of the spurious correlations could manifest as unreplicable relations among residuals or dual-factor loadings. In either instance, failing to estimate these significant, yet spurious relations would lead to poorer model fit, whereas estimating them would lead to false interpretations.

We should note that this problem of spurious levels of covariation among vari-
ables holds even if the population correlation between variables is not zero. The mathemat-
ical developments underlying factor analysis and structural modeling require
assumptions that the specific and error components (\(S_i\) and \(e_i\), respectively)
are uncorrelated with one another and with the true target construct component, \(T_i\).
However, at best, these assumptions are satisfied only in the population and will
not hold in any finite sample from the population (MacCallum et al., 1999). Thus, even in fairly large samples for the behavioral sciences (e.g., 400 participants), some nonzero covariation among the true, specific, and error components would
be expected to occur. These nonzero covariances between two items; if sufficiently large, that
might obscure the correlation between the unique factors.

A second problem related to selection of indicators is the attendant likelihood of
false positives. Even systematic sources of common variance are likely to be hypothesized by the research
of large numbers of items (however, see the next paragraph on errors, which
Misspelling indicated possible conditions under which items were used as indicators of constructs.

A third problem with more indicators than predicted solutions; because of the typically poor
item-based solutions are often unstable.

A fourth factor model analyses based on either two, three, four, or six parcel-
construct. Although Marsh et al. acknowledged the three-parcel solution, they argued that it
might not hold in any finite sample from the population (MacCallum et al., 1999). Thus, even in fairly large samples for the behavioral sciences (e.g., 400 participants), some nonzero covariation among the true, specific, and error components would
be expected to occur. These nonzero covariances between two items; if sufficiently large, that
might obscure the correlation between the unique factors.

A second problem related to selection of indicators is the attendant likelihood of
false positives. Even systematic sources of common variance are likely to be hypothesized by the research
of large numbers of items (however, see the next paragraph on errors, which
Misspelling indicated possible conditions under which items were used as indicators of constructs.

A third problem with more indicators than predicted solutions; because of the typically poor
item-based solutions are often unstable.
be expected to occur. These nonzero covariances contaminate the correlation between two items; if sufficiently large, they would lead to the necessity to specify a correlation between the unique factors. Moreover, given the evanescent nature of these added covariances, they would not be expected to recur in a new sample, rendering the specification of parameter estimates for these influences to be mere data snooping or model fitting.

A second problem related to selecting and using more items as indicators of constructs is the attendant likelihood that subsets of items will share specific sources of variance. These specific sources of variance themselves represent latent constructs no matter how narrow and trivial their nature. Such constructs are unlikely to be hypothesized by the researcher in an a priori manner and would lead to systematic sources of common variance that are not represented in the initial, a priori model specification. This problem can be thought of as resulting in misspecified a priori models. For advocates of parcels, the source of the misspecification is seen as an unwanted contamination resulting from the use of large numbers of items (however, see the con perspective, below). As such, parceling the items into fewer indicators would likely eliminate or at least reduce the unwanted source or sources and would lead to better initial model fit than if the items were used as indicators of constructs.

A third problem with more indicators per construct is related to the stability of solutions; because of the typically poor psychometric characteristics of items, item-based solutions are often unstable and take more iterations to converge, yielding relatively large standard errors of the measurement-level parameters (and generally poor model fit). In such situations, even small changes to a model can lead to noticeable changes in the magnitudes of parameters (although these changes may not affect the significance of the parameters). As a result, the generalizability of the parameters is compromised. Again, models based on parcels would not suffer from such noticeable effects.

Marsh et al. (1998) recently conducted a Monte Carlo study that is relevant to the "more-is-better" issue. In Study 3 of their simulation, they compared confirmatory factor analyses based on either two, three, four, six, or 12 items per latent construct and two, three, four, or six parcels created from all 12 items per latent construct. Although Marsh et al. acknowledged the "good" performance of a three-parcel solution, they argued that the 12-item solution was modestly better than the parcel solution and concluded that the more indicators used in a confirmatory model the better is the assessment of a latent construct. A proponent of parceling, however, may counter that the simulation was not a fair test. In their simulations, Marsh et al. used extremely well conditioned data. For example, the lowest magnitude of item loadings was around .6 for all items on all factors. The simulations also did not involve adding systematic error into the data (i.e., the S_i component described above thereby removing any chance of spurious effects). Under conditions in which one is modeling such clean and well-conditioned items in a
confirmatory factor context, the item versus parcel distinction carries little importance. However, given the pro arguments outlined earlier, under conditions in which one is modeling less-than-optimal items, the problems and pitfalls associated with typical item-level data would still be relevant.

A final issue related to the “more items” question has to do with the optimal number of indicators needed to identify and represent a latent construct. Even though latent constructs can be represented using one or two indicators (e.g., Holahan & Moos, 1994), such a practice is generally viewed as suboptimal because it reflects a locally unidentified latent variable. On the other hand, three indicators of a construct lead to a just-identified latent variable whereas four or more indicators lead to an overidentified latent variable. A just-identified latent variable is arguably better than an overidentified one. First, a just-identified construct has only one unique solution that optimally captures the relations among the items, no matter what other constructs are considered or included in a model. Overidentified models can have more than one optimal solution, depending on the nature of the other constructs that are represented. By way of metaphor, on uneven terrain, a four-legged chair will wobble (i.e., more than one position is possible), but a three-legged stool will stand fast (i.e., it has only one unique sitting position). Depending on the number of items that have been measured to represent a construct, parcels can be used to effectively reduce the number of indicators to an optimal, just-identified level.

The Empirical Cons of Parcels

Opponents of the practice of parceling have countered the many pro arguments by focusing on two main areas. The first area of concern surrounds the dimensionality of a construct and the potential pitfalls of a misspecified factor model. The second area focuses on the meaning of parameter estimates, particularly if established norms are masked or distorted by the construction of parcels. Although the amount

1With respect to measurement error, a single-indicator latent variable is essentially equivalent to a manifest variable. In this case, the error of measurement is either fixed at zero or fixed at a non-zero estimate of unreliability; additionally, a second corresponding parameter would also need to be fixed because of issues of identification. Two indicators of a construct also pose a problem because it too is an unidentified situation. With two indicators, five parameters are needed to represent the construct (two error terms, two loadings, and a latent variance term); however, only three observed statistics are available to identify those parameters. Given that for every latent construct one parameter is automatically fixed to a nonzero value in order to set the scale of estimation, this still leaves four parameters and three observed statistics (two variance estimates and one covariance estimate). Although some would argue that the unidentified parameter can be estimated using other relationships in the observed variance–covariance matrix, others have argued that an additional, meaningful constraint should be placed on the parameters to be estimated. Based on their simulation study, Little et al. (1999) strongly recommended placing an equality constraint on the two loadings associated with the construct because this would locate the construct at the true intersection of the two selected indicators.

of argumentation for the pro side far outweighs the con arguments is not disproportionately

Multidimensionality and model misspecification

not unidimensional, and when it is underidentified, espousing item parceling may be misguided (Bagozzi & Heatherton, 1994), Bandura (1994) have stated that only under conditions considered.

One line of reason supporting this case is positing a multidimensional construct and representing it in composition. Using multidimensionality because they may provide biased loadings and interpret the nature of the variance of a latent construct the parcels and the resulting constituent variables would be very difficult to interpret when the subdimensions of a construct are considered. Using a domain-representative procedure, (e.g., 1994), parcels can be created that combine variance into a latent variable. Any associated model would be susceptible to alternative interpretations (be unsure as to which dimension or source of variance one is considering). The bottom line for this viewpoint with multidimensional parcels, one can make the construct “really” is.

Problems associated with multidimensionality

Generally, we think of multidimensionality as by two or more substantive constructs; constructs that affect it. Problems in factor modeling occur when fewer defined (i.e., the model is misspecified with a specific factor, S_j, may be thought of as systematic error (e_j), because it represents reliable variance of interest. However, this systematic error dimension, particularly when it is shared problems of unmodeled multidimensionality shared across various items that are specific to a given latent variable.

Latent variables that are modeled which become defined, in part, by that systematic variably associated with a core construct of interest can confound, resulting in a confounded...
versus parcel distinction carries little importance outlined earlier, under conditions in
which item, the problems and pitfalls associated with parceling still be relevant.

items’ question has to do with the optimal way to identify and represent a latent construct. Even
with one or two indicators (e.g., service is generally viewed as suboptimal because latent variable). On the other hand, three
or more indicators are necessary for a reliable latent variable. A just-identified latent variable is possible, but it is not
optimal. First, a just-identified construct is difficult to interpret the relations among the
constructs are considered or included in a model. One optimal solution, depending on the
represented. By way of metaphor, on uneven terrain (i.e., more than one position is possible),
(i.e., it has only one unique sitting position).

have countered the many pro arguments by focusing on the area of concern surrounds the dimensionality of a misspecified factor model. The second
order estimates, particularly if established for a first order construct, the structural relations among
latent variables would be very difficult to interpret. The difficulty in interpretation arises when the subdimensions of a construct are not highly correlated with each other. Using a domain-representative parceling technique (Kishton & Widaman,
1994), parcels can be created that combine relatively independent sources of variance into a latent variable. Any associations of such latent variables with others in a model would be susceptible to alternative explanations (i.e., the researcher would be unsure as to which dimension or source of variance produced the structural effect). The bottom line for this viewpoint is that, when a latent variable is defined with multidimensional parcels, one can never be completely sure as to what the latent construct “really” is.

Problems associated with multidimensionality are not always readily apparent. Generally, we think of multidimensionality resulting from an item that is affected by two or more substantive constructs; such an item, therefore, is a measure of the constructs that affect it. Problems involving multidimensionality for structural equation modeling occur when fewer dimensions than exist in the data are specified (i.e., the model is misspecified with too few constructs). For example, a specific factor, S_i, may be thought of as systematic error, as opposed to random error (e_i), because it represents reliable variance that is unrelated to the latent construct of interest. However, this systematic error can also be considered as defining a dimension, particularly when it is shared across two or more items in a data set. Problems of unmodeled multidimensionality can arise from systematic error being shared across various items that are spread across the various parcels that define a latent variable.

Latent variables that are modeled with parcels that share systematic error become defined, in part, by that systematic error. Measures that include variance associated with a core construct of interest and shared systematic error are thereby confounded, resulting in a confounded latent construct. In interpreting relations
with this construct, relations among the confounded latent variable and other constructs in one's model will reflect the influence of the core construct we intended to measure, the systematic error, or a combination of the two, leading to problematic interpretation. With confounded latent variables, we should expect latent relations to be underestimated when the systematic error is not present in other latent variables, but we should expect the correlations to be overestimated when the systematic error is shared in other variables. When such sources of systematic error are spread across parcels, this error becomes part of the latent construct.

As we have already noted, parcel-based models attempt to cancel out random and systematic error by aggregating across these errors, thereby improving model fit (Bagozzi & Edwards, 1998; Bagozzi & Heatherton, 1994). The advantages and appropriateness of this approach to increasing model fit is controversial (e.g., Hall, Snell, & Foust, 1999). Bandalos and Finney (2001) argued that parceling would improve model fit for all models, correctly specified or not. As such, parceling may reduce our ability to identify misspecified models and may increase our Type II error rate (failing to reject a model that should be rejected). For example, Bandalos (1997) found that parceling could mask double loadings of items.

Generally speaking, parceling can hide many forms of misspecification, at least misspecification that would be found if analyses were performed on item-level data. As mentioned, the pro-parcel argument suggests that the hidden sources of error may effectively be removed from the to-be-analyzed data. A model fitted to parcel-level data would, therefore, no longer be misspecified. The con-parcel argument would counter that the use of parceling to remove the unwanted errors fundamentally changes the reality of the data such that the fitted model is a misrepresentation. To avoid such situations, some have argued that a more defensible strategy would be to model data at the item level in order to examine possible sources of misspecification (e.g., Bandalos & Finney, 2001).

Established norms. Even in cases when parceling is a defensible statistical procedure, employing parcels may still be ill advised on applied grounds. Throughout the behavioral and social sciences, many scales have established norms based on their means, standard deviations, clinical cutoff scores, and so on. In clinical research, for example, several scales that tap the same theoretical construct are commonly employed (e.g., depression; see Tanaka & Huba, 1987). These scales may be used as indicators of a latent construct. When many scales are administered, one may be tempted to parcel them into fewer indicators of the target construct. Although this procedure may have statistical advantages (especially when the unidimensionality of this construct was previously established), it may run the risk of losing important applied information that is contained in each scale. For example, scale-level information may help assess the relative severity of the sample studied because both the intercepts and slopes of the scales are readily interpretable when represented in their original untransformed metrics.

The "established norms" argument suggests that parcel scores are meaningful in terms of threshold parcels would create an arbitrary metric that is not interpretable. In addition, interpretable unique effects from parcels are used as indicators of a latent construct. The norms argument suggests that unique factors of parcels have important theoretical or clinical relevance. If these were used. This line of reasoning is less daunting and is more relevant to debates about the various techniques that can be used.

TECHNIQUES FOR PARCELING

The various techniques that are available as a common prerequisite: The dimensionality of a construct determined prior to parceling. As Bandalos and Finney (2001) suggest that use parceling techniques report the data for a construct. Omitting such information may benefit dimensionality not been demonstrated. If the dimensionality of a set of items is prescreened using an exploratory factor analysis estimator with an oblique rotation (i.e., a common measurement model). However, we suggest that subset of items, particularly when the items. Once the dimensionality of a set of items is established, several techniques for parceling item parcels are used for unidimensional item sets.

Random Assignment

Following from a domain sampling rate, the random assignment of parcels is to assign each item, random parcel groupings. Depending on the number of parcels, possibly four parcels, or groupings of items to parcels should, on average, include common factor variance. We mention that items in a random pool, such as questionnaire items, might items evince unequal variances because of the resulting parcel would be biased in...
The "established norms" argument suggests that the unstandardized parameters are meaningful in terms of threshold parameters or symptomatology and that parcels would create an arbitrary metric that would no longer carry this information. In addition, interpretable unique effects of scales are possible when established scales are used as indicators of a latent construct. In other words, the established norms argument suggests that the unique effects of established measures may also have important theoretical or clinical relevance that would be missed if parcels were used. This line of reasoning is less applicable to the item versus parcel debates and is more relevant to debates about scales versus parcels.

All of the arguments, both pro and con, have merits. However, before we turn to a detailed evaluation of the relative merits, we first provide a brief presentation of the various techniques that can be used to create parcels.

TECHNIQUES FOR BUILDING PARCELS

The various techniques that are available to build parcels generally share a common prerequisite: The dimensionality of the items to be parcelled must be determined prior to parceling. As Bandalos and Finney (2001) pointed out, several studies that use parceling techniques report that the dimensionality of the items used to represent a construct. Omitting such information, particularly for constructs whose dimensionality has not been demonstrated in the literature, is an unwarranted practice. If the dimensionality of a set of items is not known, the items could be prescreened using an exploratory factor analysis algorithm that uses an iterative estimator with an oblique rotation (i.e., the analogous algorithm of the SEM measurement model). However, we suggest verifying the presumed dimensionality of a set of items, particularly when the items are used across diverse and new populations. Once the dimensionality of a set of items is determined, then one or another of several techniques for parceling items can be applied. We turn first to techniques for unidimensional item sets.

Random Assignment

Following from a domain sampling rationale, one simple method for constructing parcels is to assign each item, randomly and without replacement, to one of the parcel groupings. Depending on the number of items to be assigned, two, three, or possibly four parcels, or groupings of items, could be created. Random assignment of items to parcels should, on average, lead to parcels that contain roughly equal common factor variance. We mention that items should generally stem from a common pool, such as questionnaire items responded to on a common scale. If the items evince unequal variances because the scales, or metrics, differ across items, the resulting parcel would be biased in favor of the items with the larger variances.
Of course, standardizing items to a common variance metric would alleviate such problems.

Item-to-Construct Balance

In constructing parcels for use in a larger SEM model, one goal is to derive parcels that are equally balanced in terms of their difficulty and discrimination (intercept and slope). If the mean levels of the indicators were of little or no concern, a simple examination of the item-to-construct relations would allow one to build balanced parcels. Specifically, one would specify a single-construct model that includes all items associated with the construct. Using the loadings as a guide, one would start by using the three items with the highest loadings to anchor the three parcels. The three items with the next highest item-to-construct loadings would be added to the anchors in an inverted order. The highest loaded item from among the anchor items would be matched with the lowest loaded item from among the second selections. If more items were available, the basic procedure would continue by placing lower loaded items with higher loaded parcels. Under some conditions, parcels may have differential numbers of items in order to achieve a reasonable balance.

Under conditions in which the intercept information is also important, this procedure can be extended to include the intercepts by specifying a single-construct model as mentioned previously, but request that the means, or intercepts, be estimated. In this case, one has to consider the relative balance between the discrimination parameter of the item (i.e., its loading) and its difficulty parameter (i.e., its intercept) in constructing balanced parcels.

As with any technique for constructing parcels, the item-to-construct relations should be verified in each potential subgroup that may be relevant (e.g., by gender, by age, by ethnicity, etc.). Some argue that item-to-construct relations should be verified anew in every new sample (Little, 1997). However, the most important advantages accruing to the use of structural equation modeling are present only if measures and analyses are constructed on a priori bases. As a result, once the item-to-construct relations have been verified several times in representative samples drawn from a given population, researchers can capitalize on this work to parcel items in a manner informed by the previous research when drawing participants from that population. Having well-established parcel indicators of constructs would enable the researcher to evade any arguments that the form of parceling was biased by too much data snooping in this sample.

A Priori Questionnaire Construction

Recent questionnaire designs presented by Little and colleagues have contained a priori guidelines for constructing parcels for use in SEM and related procedures (e.g., Little, Oettingen, & Baltes, 1995; Little & Wanner, 1997). For example, the

Control, Agency, and Means–Ends Interview items, six items for each agency construct. Three items in the positive direction (e.g., “I can try hard”), recommended that when creating parcels a negatively worded item that has been reverse-scored as indicating high agency). The ratio introduces the negativity versus positivity bias, overlying construct information regarding agency.

One important caveat about using a priori. Specifically, item responses should be scored expected pattern. The creators of the CAM scale for which the expected structure of a construct sample of Japanese children, the three negatively with the three positively worded luck negative prior to inversion; Karasawa, 1997). This quite unexpected finding prompted the conclusion that luck may not be a unidimensional property to have two faces: good luck and bad luck context would be one who wins the lottery, persons must remain vigilant to variables or unidimensionality of a set of items.

Approaches to Multidimensionality

Kishon and Widaman (1994) described multidimensional item sets. To illustrate, imagine facets (A, B, and C), each measured by three items per approach, which Kishon and Widaman approach, creates three parcels that use the parcel would reflect Facet A and would be the second parcel would reflect Facet B, and approach would result in a higher stratum of internally consistent facets are used stratum, or higher order, construct. Advantage not limited to, keeping the multidimensionality allowing the unique component of a facet (e.g., using the “unique effect” approach or.

The second, domain-representative approach to multidimensionality by creating parcels that balance (as in the internal-consistency approach) the multiple dimensions. With this method
Control, Agency, and Means–Ends Interview (CAMI; Little et al., 1995) contains six items for each agency construct. Three of these items are worded in the negative direction (e.g., “I’m just not very smart”), and the remaining three are worded in the positive direction (e.g., “I can try hard”). In their instructions, Little et al. recommended that when creating parcels a positively worded item be coupled with a negatively worded item that has been reverse coded (thereby rendering the high scores as indicating high agency). The rationale for this recommendation is to reduce the negativity versus positivity bias, or acquiescence bias, relative to the underlying construct information regarding agency.

One important caveat about using a priori recommendations must be addressed. Specifically, item responses should be screened to ensure that they conform to the expected pattern. The creators of the CAMI instrument found a condition under which the expected structure of a construct did not conform. Specifically, in a sample of Japanese children, the three negatively worded luck items correlated positively with the three positively worded luck items (typically these correlations are negative prior to inversion; Karasawa, Little, Miyashita, Mashima, & Azuma, 1997). This quite unexpected finding prompted further inquiry and lead to the conclusion that luck may not be a unidimensional concept in Japan. Instead, it appears to have two faces: good luck and bad luck. A lucky person in this sociocultural context would be one who wins the lottery only to be hit by a bus. Thus, investigators must remain vigilant to variables that can potentially moderate the unidimensionality of a set of items.

Approaches to Multidimensionality

Kishton and Widaman (1994) described two methods for dealing with multidimensional item sets. To illustrate, imagine a nine-item scale comprising three facets (A, B, and C), each measured by three items (e.g., A1 through A3). The first approach, which Kishton and Widaman defined as the internal-consistency approach, creates three parcels that use the facets as the grouping criteria. The first parcel would reflect Facet A and would be the sum or average of A1, A2, and A3. The second parcel would reflect Facet B, and the third would reflect Facet C. This approach would result in a higher stratum latent construct, wherein the lower stratum of internally consistent facets are used as manifest indicators of the higher stratum, or higher order, construct. Advantages of this approach include, but are not limited to, keeping the multidimensional nature of the construct explicit, and allowing the unique component of a facet to relate to other constructs in the model (e.g., using the “unique effect” approach described by Hoyle & Smith, 1994).

The second, domain-representative approach attempts to account for multidimensionality by creating parcels that encompass not only the common variance (as in the internal-consistency approach), but also the reliable unique facets of the multiple dimensions. With this method, parcels are created by joining items
from different facets into item sets. For example, the first parcel may consist of the sum of \(A_1, B_1, \) and \(C_1 \), the second parcel would be the sum of \(A_2, B_2, \) and \(C_2 \), and, finally, the third parcel would reflect \(A_3, B_3, \) and \(C_3 \). In this manner, each parcel reflects all of the facets (or dimensions) present within the set of indicators.

Consider once again the extroversion construct, as assessed using the NEO-PI (Costa & McCrae, 1992). If one were to construct internally consistent parcels for extroversion, one would create six parcels, one each for gregariousness, assertiveness, activity, excitement seeking, positive emotions, and warmth; each parcel would consist of the sum of all items for a given facet (e.g., all items from the gregarious facet). However, to construct domain representative parcels, any number of parcels could be constructed—three parcels, four parcels, or more. Under this approach, one should ensure that each parcel contains item content from each of the six facets. Each parcel should have at least one item from each of the six facets of extroversion, and each facet would preferably be present in each parcel to the same extent.

In comparing the merits of internally consistent and domain representative parcels, Kishton and Widaman (1994) reported analyses of data on three scales, one of which was a measure of internal-external locus of control. This locus of control scale had three identifiable dimensions, consistent with over 20 years of factor analytic research on locus of control. When internally consistent indicators of locus of control were included in a model, the resulting model had several problems, including both highly unstable and unacceptable parameter estimates. In contrast, use of domain representative parcels resulted in stable and acceptable estimates of all parameters. Although some may consider the domain representative parcels as representing confounded indicators, the better stability and fit of the model employing the domain representative parcels offers compelling evidence of their utility in certain situations.

WEIGHING THE MERITS

Throughout our discussion of the pros and cons of parceling, we have mentioned both merits and cautions along the way. In this section, we assemble the common general themes for a more direct contrast. We turn first to the question of dimensionality.

Nearly all of the research and literature related to parceling supports the position that the dimensional nature of a measured construct can have a serious impact on the accuracy and validity of various parceling techniques. Moreover, numerous writers have suggested that only under conditions of unidimensionality should parceling be considered (Bandalos & Finney, 2001). We concur that parceling can be particularly effective when items from a unidimensional scale are parcelled. For example, some reaction time studies rely on large numbers of trials that theoretically tap into the same underlying process or construct with each individual trial as an indicator, hence, the need for parceling.

The largest threats to the validity of general and a specific form of misspecification would be warranted, if not essential (see, e.g., Byrne, 1998). The largest threats to the validity of the parcel approach are (a) general and specific forms of misspecification of the construct, (b) a proposed model is legitimate or correct, and (c) the parcel is constructed using the item such that the parcel loads on the construct. A general form of misspecification is to specify a model such that some of the relationships between parcels and construct are not consistent with the construct. In such a model, some may argue that the item parcel may be valid only when one is able to specify the appropriate model.

One can take one of two approaches to address this issue. The first approach attempts to understand fully the construct and then specify the model. The second approach focuses primarily on the model. From this perspective, item parceling is constructed based on the theory of the construct. The dual loading is unimportant and can be eliminated through aggregating items that do not load on both factors. The resulting model is a more valid one that may better represent the construct. However, if the goals of the researcher are not theory-based, the dual loading may be more important. The goals of the researcher are to model the construct that is the most closely related to the construct as defined by the item parcel.

The pitfalls of parceling are most evident when the parceling method is applied to correlated items. The goal is to maximize the correlation among items in a parcel, but this can be achieved at the expense of the number of parcels in the model. This can result in a model that is less valid than the original model. However, if the parcel is considered to be a single item, the item parcel may represent another researcher's model.
For example, the first parcel may consist of the parcel would be the sum of A, B, and C, and, in this manner, each parcel represent the set of indicators.

on construct, as assessed using the NEO-PI R to construct internally consistent parcels for each parcel, one each for gregariousness, assertiveness, positive emotions, and warmth; each parcel for a given facet (e.g., all items from the gregariousness domain representative parcels, any number of parcels, four parcels, or more. Under this one parcel contains item content from each of facets at least one item from each of the six facets parcel preferably be present in each parcel to the

ity consistent and domain representative parcels. Analyses of data on three scales, one of internal locus of control. This locus of control scale, consistent with over 20 years of factor analysis, was an internally consistent indicators of locus of control. The resulting model had several problems, inacceptable parameter estimates. In contrast, a model resulted in stable and acceptable estimates of parameters. It is plausible that the domain representative parcels as a better stability and fit of the model emerged. The parceling offers compelling evidence of their utilities.

THE MERITS

The advantages and cons of parceling, we have mentioned briefly. In this section, we assemble the common arguments. We turn first to the question of whether related to parceling supports the position that measured construct can have a serious impact on parceling techniques. Moreover, numerous conditions of unidimensionality should parceling. We concur that parceling can be a unidimensional scale are parcelled. For example on large numbers of trials that theoretically tap into the same underlying process or phenomenon. To estimate a latent construct with each individual trial as an indicator would clearly pose numerous difficulties. In such situations and if the dimensional structure is clear, parceling would be warranted, if not essential (see, e.g., Cunningham, Preacher, & Banaji, 2001).

The largest threats to the validity of parceling are model misspecification in general and a specific form of misspecification, multidimensionality. If parcels can obscure invalid assumptions in a model, then a researcher can never be assured that a proposed model is legitimate or correctly specified. For example, an item may load on both a depression factor and an anxiety factor, whereas a parcel can be created using the item such that the parcel loads solely on the depression construct. In such a model, some may argue that the item information is misspecified-variance associated with anxiety in the item is not captured in the model. Although such arguments appear to undermine the usefulness of parceling, we suggest that these arguments may be valid only when one is interested in the items themselves.

One can take one of two approaches to modeling latent variables. The first approach attempts to understand fully the relations among items. If this level of analysis were the primary goal, then missing a double loading or correlated residual at the item level reflects a failure to understand fully the pattern of observed data. A second approach focuses principally on the relations among latent variables. From this perspective, item indicators are merely tools that allow one to build a measurement model for a desired latent construct. Once built, the item indicators become less consequential. With such an approach, if a dual loading were eliminated through aggregating items in order to specify a clean latent construct, then the goals of the researcher are realized through parceling, not hindered by it. The dual loading is unimportant and can be effectively minimized during an initial construct-building phase. The same logic applies to correlated residuals. If items are only building blocks, estimating the additional shared relationships is unimportant to the theory building in latent space. Eliminating the residual through parceling is as effective as explicitly correlating the residual.

The pitfalls of parceling are most evident when one seeks to understand the exact relations among the individual items comprising the measured variables. If the exact relations among items are the focus of the modeling, one should not parcel. On the other hand, if the relations among constructs are of focal interest, parceling is more strongly warranted. However, before one chooses to employ a particular technique, the data must be commensurate with the applied technique. For example, the problems associated with a misspecified model can be circumvented if prior analyses are performed to establish the factorial structure of the items that are to be modeled.

A further consideration relevant to the choice to parcel or not to parcel involves the goals of a study and the resulting goals of the measurement process. As Campbell and Fiske (1959) observed over 40 years ago, one researcher's trait construct may represent another researcher's method confound. To make headway against
this conundrum, the target constructs of a research study must be defined clearly by the investigator, and measurement operations should follow directly and unambiguously from these construct definitions. In developing measurement operations, the researcher should realize that item homogeneity is, to some extent, arbitrary. The goal should be to measure the construct of interest in as adequate a way as possible.

The arbitrariness of homogeneity can be illustrated well using the research of Spearman (1927), the first and strongest proponent of general intelligence, or g. In his empirical studies, Spearman typically chose tests such that the battery of measures contained at most one test of verbal comprehension, one of spatial skills, one of reasoning, and so on. Given the purposeful selection of measures, which ensured only modest overlap in the skills tapped, finding that a single factor is sufficient to explain the covariations among the measures is not surprising. Spearman labeled his single factor “g” because a single dimension could easily account for the relations among the tests.²

In contrast to Spearman’s (1927) approach to indicator selection, Thurstone (1938; Thurstone & Thurstone, 1941) typically sought to assemble a large battery that included several tests of each given type such as several of verbal skills, several of spatial skills, and so on. Given this selection of indicators, finding that several factors (e.g., verbal, spatial, numerical, etc.) were required to model the relations among the tests was, once again, unsurprising. By constructing parcels, however, one could have restored the unidimensionality of measures in the Thurstone battery to reveal only the g component of the ability battery. For example, one could sum all verbal skill tests into a single verbal indicator, all spatial tests into a single spatial indicator, and so on. The upshot of this approach would be the restoration of a single, unidimensional latent variable model.

The measurement approaches of Spearman and Thurstone exemplifies the interplay between a researcher’s goals for a study and the coordinated measurement operations that subserve that goal. If one’s goal were to study g then Spearman’s approach is quite reasonable and few would argue that the structure was arbitrarily manufactured. On the other hand, with the same goal in mind, one could follow Thurstone’s measurement strategy to assemble a comprehensive battery of tests with several tests from each facet, but then use parceling to restore the desired unidimensional structure. Either approach would lead to a set of measured variables that would fit a unidimensional factor structure; that is, both would lead to the good fit of a measurement model with a single latent variable—provided the results selected under the Thurstone method. The goal were to represent the structure among all tests and Thurstone approaches to battery construction comes. Due to the fact that Spearman selected the domain, he virtually ensured the appearance of a Thurstonian approach, in the absence of parceling a researcher would have greater flexibility to use measures by careful and informed use of parceling.

This discussion of parceling in the ability to parceling controversy that has arisen in persuasion is that both proponents and opponents of parceling time, and neither is correct all of the time. If effects of a latent variable at a given level of intelligence), then appropriate selection of scales may cancel out the effects of nuisance factors at a lower level (e.g., verbal comprehension, spatial ability, etc.) warranted. If the investigator’s goal is to represent space at the level of the individual to the lower-level effects would tend to obscure the parceling intends to study. In situations of this type, a lineation of the goals of a study is clearly the task that carefully laid out, the decision to parcel or not goals and the nature of the measurements to use in measurement operations needed to attain the conclusion regarding the decision to parcel or not. Conclusions can be drawn from our review of parceling techniques cannot be dismissed altogether use of parceling techniques is never warranted.

ACKNOWLEDGMENTS

Parts of this work were supported by a grant to Todd Little and by Grant HD22953 from the National Institute of Child and Human Development to Keith Widaman.

We thank SEMNET for its ever evolving graphics such as those presented herein.

REFERENCES

tests selected under the Thurstone method were parcelled appropriately. If one’s
goal were to represent the structure among all single indicators, then the Spearman
and Thurstone approaches to battery construction would lead to very different
outcomes. Due to the fact that Spearman selected only a single test from each facet of
the domain, he virtually ensured the appearance of only a single factor. Although a
Thurstonian approach, in the absence of parceling, would require multiple factors,
a researcher would have greater flexibility for modeling the relations among the
measures by careful and informed use of parceling.

This discussion of parceling in the ability domain has clear implications for the
parceling controversy that has arisen in personality realm. The primary implication
is that both proponents and opponents of parceling are correct some of the
time, and neither is correct all of the time. If the goal of an investigator is to model
effects of a latent variable at a given level of generality (analogous to general intelli-
gencc), then appropriate selection of scales or parceling of items can minimize or
cancel out the effects of nuisance factors at a lower level of generality (analogous to
verbal comprehension, spatial ability, etc.). In such situations, parceling is war-
ranted. If the investigator’s goal is to represent the dimensionality of the measure-
ment space at the level of the individual tests or items, then the minimizing of
lower-level effects would tend to obscure precisely the effects that the investigator
intends to study. In situations of this type, parceling is contraindicated. Careful de-
lineation of the goals of a study is clearly the paramount issue. Once the goals are
carefully laid out, the decision to parcel or not to parcel would be dictated by the
goals and the nature of the measurements obtained. A researcher’s goals and the
measurement operations needed to attain these goals supercede either doctrinaire
stance regarding the decision to parcel or not to parcel. In the end, two clear con-
cclusions can be drawn from our review of the issues. On the one hand, the use of
parceling techniques cannot be dismissed out of hand. On the other, the unconsid-
ered use of parceling techniques is never warranted.

ACKNOWLEDGMENTS

Parts of this work were supported by a grant from Yale College of Yale University
to Todd Little and by Grant HD22953 from the National Institute of Child Health
and Human Development to Keith Widaman.

We thank SEMNET for its ever provocative and informative discussions of top-
ics such as those presented herein.

REFERENCES

General approach to representing multifaceted personality
Structural Equation Modeling, 1, 35–67.
error in structural equation models: The effects of sample
p parceling issues in structural equation modeling. In G. A.
New developments and techniques in structural equation
Research Erbsbaum Associates, Inc.
Discriminant and convergent validity by the multitrait-
matrix, 56, 81–105.
12. Calculation of the sixteen personality factor questionnaire.

4. Instrument, second order, and refraction factors in personal-

13. radial parceling double factoring design: A solution to
the Behavioral Research, 10, 165–179.

11. Personality assessment in clinical practice: The NEO Per-
mut, 4, 5–13.

tical Science, 12, 163–170.

item parceling strategies in SEM: Investigating the subtle
Organizational Research Methods, 2, 233–256.

8. parceling in structural equation modeling: Nonnormal
omitted for publication.

7. tors, person social resources, and depression: A
nal Psychology, 100, 31–38.

6. iring clinical research questions as structural equation
Consulting and Clinical Psychology, 62, 158–176.

ce. International Journal of Behavioral Development,
dimensional versus domain representative parceling of
Educational and Psychological Measurement, 54.

4. (1999). On selecting indicators for multivariate
Anales of cross-cultural data: Practical
Research, 32, 53–76.

roles: When "good" indicators are bad and "bad" indica-
tions. The revised control, agency, and mean-ends inter-
ment using mean and covariance (MACS) analyses
(49). Berlin: Max Planck Institute.

2. A multidimensional instrument to assess children's
abilities (Materialien aus der Bildungsforschung, No. 59).

1. & Hong, S. (1999). Sample size in factor analysis. Psy-
son, D. (1998). Is more ever too much: The number of in-

SEMNET. (2001). Structural equation modeling discussion network at Listserv@BAMA.VA.edu

